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Abstract

In this paper we present practical stability conditions for the finite-difference time-domain method on nonuniform ten-
sor product grids (Yee grids). These stability conditions apply to Maxwell’s equations for inhomogeneous and lossless
media. Rectangular domains are considered and the conditions are expressed in terms of the minimum spatial stepsizes
of the grid and the maximum electromagnetic wave speed in the configuration. The maximum wave speed is known as soon
as the media are specified, while the minimum spatial stepsizes are known after the configuration has been discretized. For
two-dimensional configurations we present a number of numerical examples which illustrate the effectiveness of the pro-
posed stability conditions.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The finite-difference time-domain method (FDTD method) is a very popular, explicit and conditionally
stable time stepping method for Maxwell’s equations. To obtain stable results, the time step Dt has to satisfy
the Courant–Friedrichs–Lewy (CFL) stability condition (see [2,4,7,11])
0021-9
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Dt < 2=qðAÞ; ð1Þ

where A is the first-order Maxwell system matrix and q(A) is its spectral radius. The CFL condition is both
necessary and sufficient for stability.

The problem with the stability condition of Eq. (1) is that the spectral radius of matrix A is not known explic-
itly except for special cases such as uniform grids applied to problems involving homogeneous media (see [2]).
In general, we can compute the spectral radius using some iterative eigensolver or we can try to estimate it. The
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first option we like to avoid since it introduces additional computation time to the FDTD solution procedure.
The second option is the one we pursue in this paper. Specifically, we determine easily computed upper bounds
for the spectral radius of matrix A in terms of the minimum stepsizes of the grid and the maximum electromag-
netic wave speed that is present in the configuration. Denoting these upper bounds by uk for k-dimensional
problems (k = 1,2,3), we have q(A) 6 uk and we take
Dt < 2=uk
as a sufficient condition for stability of the FDTD method. Moreover, we also show that for uniform grids and
homogeneous media our stability conditions reduce to the well-known conditions that hold for these partic-
ular cases. To the knowledge of the author, the stability conditions presented in this paper are not known in
the literature.

The paper is organized as follows. In Section 2 we briefly review some aspects of the spatial finite-difference
discretization procedure. Most of the material in this section is well known and we only review what is needed
in the analysis that follows. The stability analyses for one-, two-, and three-dimensional problems are
presented in Sections 3–5, respectively. In Section 6 we present two numerical examples illustrating the effec-
tiveness of the proposed stability condition for two-dimensional configurations.

Finally, we recall some basic facts about matrix norms which are used in the stability analysis that follows.
Given a real matrix C, not necessarily square, its maximum column sum norm, spectral norm, and maximum
row sum norm are denoted by iCi1, iCi2, and iCi1, respectively. For the spectral norm of matrix C we have
the bound
kCk2 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kCk1kCk1

q
; ð2Þ
and if matrix C is square we also have
qðCÞ 6 kCk2.
Equality holds in the latter inequality if C is normal, that is, if C commutes with its transpose. Furthermore,
the symbol � denotes the Kronecker product (tensor product), the identity matrix of order p is denoted by Ip,
and for any matrix C we have
kIp � Ck2 ¼ kC� Iqk2 ¼ kCk2. ð3Þ
2. Preliminaries

The spatial discretization procedure for Maxwell’s equations using two-point finite-difference formulas on
staggered nonuniform Cartesian tensor product grids (Yee grids, see [12]) is standard and we only review what
is needed to understand the analysis presented in this paper. Much more can be found in [6,10], for example.

We start by normalizing Maxwell’s equations with respect to a problem related reference length ‘. Specifically,
we introduce the normalized position vector and normalized time coordinate as x 0 = ‘�1x and t 0 = c0‘

�1t, respec-
tively, where c0 is the electromagnetic wave speed in vacuum. In what follows we drop the primes and work with
normalized coordinates and field quantities only. Conversion of the stability conditions to the original (unnor-
malized) coordinates is carried out at the end of the stability analyses for one-, two-, and three-dimensional
problems.

The domain of interest is the 3-rectangle
X ¼ fx 2 R3; 0 < x < ‘x; 0 < y < ‘y ; 0 < z < ‘zg;

where ‘x,y,z > 0. In this domain an electromagnetic field is present that satisfies the normalized Maxwell’s
equations
�r�Hþ erotE ¼ �Jext;
and
r� Eþ lrotH ¼ �Kext;
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where Jext and Kext are the known external electric- and magnetic-current densities. These sources start to act
at t = 0, and no fields are present in X prior to this time instant. The time interval of interest is therefore
XT ¼ ft 2 R; 0 < t < T ; T > 0g;

and perfect electrically conducting boundary conditions (PEC material boundary conditions) are imposed at
the boundary of X.

To discretize Maxwell’s equations in space, primary and dual grids are introduced in each Cartesian direc-
tion. The primary grids in the x-, y-, and z-directions are defined as
Xp
x ¼ fxp 2 R; p ¼ 0; 1; . . . ; nxþ 1; xp > xp�1; x0 ¼ 0; xnxþ1 ¼ ‘xg;

Xp
y ¼ fyq 2 R; q ¼ 0; 1; . . . ; ny þ 1; yq > yq�1; y0 ¼ 0; ynyþ1 ¼ ‘yg;
and
Xp
z ¼ fzr 2 R; r ¼ 0; 1; . . . ; nzþ 1; zr > zr�1; z0 ¼ 0; znzþ1 ¼ ‘zg.
The stepsizes of the primary grids are given by dx;p = xp � xp�1 for p = 1,2, . . .,nx + 1, dy;q = yq � yq�1 for
q = 1,2, . . .,ny + 1, and dz;r = zr � zr�1 for r = 1,2, . . .,nz + 1. These stepsizes are stored on the diagonal of
the stepsize matrices Wx, Wy, and Wz. Specifically
Wx ¼ diag dx;1; dx;2; . . . ; dx;nxþ1ð Þ; Wy ¼ diag dy;1; dy;2; . . . ; dy;nyþ1

� �
;

and
Wz ¼ diag dz;1; dz;2; . . . ; dz;nzþ1ð Þ.

Moreover, we define the minimum primary stepsizes in the x-, y-, and z-directions as
dx;min ¼ min
p

dx;p; dy;min ¼ min
q

dy;q; and dz;min ¼ min
r

dz;r.
The dual grids in the x-, y-, and z-directions are defined as
Xd
x ¼ fx̂p 2 R; p ¼ 1; 2; . . . ; nxþ 1; x̂pþ1 > x̂p; 0 < x̂p < ‘xg;

Xd
y ¼ fŷq 2 R; q ¼ 1; 2; . . . ; ny þ 1; ŷqþ1 > ŷq; 0 < ŷq < ‘yg;
and
Xd
z ¼ fẑr 2 R; r ¼ 1; 2; . . . ; nzþ 1; ẑrþ1 > ẑr; 0 < ẑr < ‘zg;
and the stepsizes of the dual grids are given by d̂x;p ¼ x̂pþ1 � x̂p for p = 1,2, . . .,nx, d̂y;q ¼ ŷqþ1 � ŷq for
q = 1,2, . . .,ny, and d̂z;r ¼ ẑrþ1 � ẑr for r = 1,2, . . .,nz. All these stepsizes are stored on the diagonal of the step-
size matrices cWx; cWy ; and cWz. More precisely, we have
cWx ¼ diag d̂x;1; d̂x;2; . . . ; d̂x;nx

� �
; cWy ¼ diag d̂y;1; d̂y;2; . . . ; d̂y;ny

� �
;

and
 cWz ¼ diag d̂z;1; d̂z;2; . . . ; d̂z;nz

� �
.

The minimum dual grid stepsizes are defined as
d̂x;min ¼ min
p

d̂x;p; d̂y;min ¼ min
q

d̂y;q; and d̂z;min ¼ min
r

d̂z;r.
The purpose of this paper is to present CFL stability conditions in terms of the minimum primary and dual
stepsizes and the maximum electromagnetic wave speed.

Since staggered grids are used in almost all FDTD solution strategies, we restrict ourselves to such grids in
this paper. Staggered grids are characterized by the property that in each Cartesian direction the dual nodes
interlace with the primary nodes. For example, in the x-direction the nodes satisfy
0 ¼ x0 < x̂1 < x1 < x̂2 < . . . < x̂nxþ1 < xnxþ1 ¼ ‘x. ð4Þ
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Fig. 1 shows primary and dual nodes in the x-direction with the corresponding stepsizes. At this point we note
that a dual node is often placed halfway two primary nodes, that is,
x̂p ¼
xp þ xp�1

2
for p ¼ 1; 2; . . . ; nxþ 1; ð5Þ
see, for example, [6]. In many important applications, however, a dual node is not exactly located in the middle
as in Eq. (5). This is the case for optimal grids, for example, as introduced in [1,3]. For an optimal grid it turns
out that dual nodes interlace with the primary nodes (as in Eq. (4)), but the nodes do not satisfy Eq. (5). Fur-
thermore, we like to point out that even if Eq. (5) holds then still dx;min 6¼ d̂x;min, in general. For example, with
‘x = 1, nx = 2, dx;1 = 0.44, dx;2 = 0.12, dx;3 = 0.44 and Eq. (5), we have d̂x;1 ¼ d̂x;2 ¼ 0:28 and clearly
dx;min 6¼ d̂x;min in this case. Similar remarks apply to the primary and dual nodes in the y- and z-directions,
of course. In what follows we assume that the grid is staggered, but we do not require that a dual node is
located halfway two primary nodes.

Having defined the primary and dual grids in the x-, y-, and z-directions, it is customary to introduce Yee
cells as
XYee;p;q;r ¼ fx 2 R; xp < x < xpþ1; yq < y < yqþ1; zr < z < zrþ1g;
for p = 0,1, . . .,nx, q = 0,1, . . .,ny, and r = 0,1, . . .,nz. To comply with the PEC material boundary conditions
used for grid termination, the finite difference approximations for the electric field strength are located at the
edges of a Yee cell, while the finite difference approximations for the magnetic field strength are located at the
faces of a Yee cell (see, again, [6]). For example,
the finite difference approximation of Ex is defined on Xd
x � Xp

y � Xp
z � XT ;
and
the finite difference approximation of H x is defined on Xp
x � Xd

y � Xd
z � XT .
Finally, we introduce two-point differentiation matrices which map finite difference approximations defined on
a primary grid in one Cartesian direction to the dual grid in the same direction, and vice versa. Specifically,
differentiation of finite-difference approximations defined on the primary grid in the x-direction is carried out
by the differentiation matrix
X ¼ �W�1
x ½bidiagnxð�1; 1Þ�T;
d x;3 d x;5d x;4dx;2

x2 x3 x5x4x1

x5x4x3x2x1x0

dx;3dx;1 dx;2 dx;4

dx;1

Fig. 1. A one-dimensional staggered grid showing interlacing primary (crosses) and dual (circles) nodes (nx = 4).
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while differentiation of finite-difference approximations defined on the dual grid in the x-direction is carried
out by
bX ¼ cW�1

x bidiagnxð�1; 1Þ.

In the above expressions, bidiagnx(�1,1) is nx-by-(nx + 1) and upper bidiagonal with �1 on the diagonal and
+1 on the upper diagonal. Similarly, we have
Y ¼ �W�1
y ½bidiagnyð�1; 1Þ�T; bY ¼ cW�1

y bidiagnyð�1; 1Þ;

Z ¼ �W�1
z ½bidiagnzð�1; 1Þ�T; and bZ ¼ cW�1

z bidiagnzð�1; 1Þ:
These matrices are nonsquare and in what follows we need upper bounds for the spectral norms of these matri-
ces. Using Eq. (2), it is easily verified that
kXk2 6
2

dx;min

; kYk2 6
2

dy;min

; kZk2 6
2

dz;min

; ð6Þ
and
kbXk2 6
2

d̂x;min

; kbYk2 6
2

d̂y;min

; kbZk2 6
2

d̂z;min

. ð7Þ
After the spatial discretization procedure one arrives for one-, two-, and three-dimensional problems at the
so-called finite-difference state-space representation (see [2]):
ðDþMotÞf ¼ �q; ð8Þ

where matrix D is the spatial differentiation matrix, M is a diagonal and positive definite medium matrix with
relative permittivity and permeability values on the diagonal, f is the field vector containing the finite-
difference approximations, and q is the source vector. The smallest relative permittivity value on the grid is
denoted by er;min and the smallest relative permeability value by lr;min. Explicit expressions for the differenti-
ation matrix D and the medium matrix M are given in the sections below.

The state-space representation of Eq. (8) can be rewritten in terms of the so-called system matrix
A ¼M�1=2DM�1=2 ð9Þ

as
ðAþ InotÞ~f ¼ �~q;
where n is the order of the system, and the scaled field and source vector are given by
~f ¼M1=2f and ~q ¼M�1=2q;
respectively. Now in the FDTD method, the time coordinate in Eq. (8) is discretized in a leap-frog manner
using a time step Dt. To obtain stable results, this time step has to satisfy the CFL condition of Eq. (1), where
matrix A is given by Eq. (9). We take this condition as a starting point and follow the procedure outlined in the
previous section to obtain explicit stability conditions for one-, two-, and three-dimensional problems.

3. One-dimensional problems

We consider a one-dimensional configuration with no variation in the x- and z-directions. For this problem
the differentiation matrix D and the medium matrix M can be written as
D ¼ 0 bY
Y 0

 !
and M ¼

Me 0

0 Ml

� �
.

The matrices Me and Ml are both diagonal and positive definite with relative permittivity and permeability
values on the diagonal. The system matrix for this particular problem is given by
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A ¼
0 A1

A2 0

� �
;

where
A1 ¼M�1=2
e

bYM�1=2
l and A2 ¼M�1=2

l YM�1=2
e .
To find an upper bound for the spectral radius of matrix A, we start by considering the eigenvalue problem
Ax ¼ kx ðx 6¼ 0Þ.

Partitioning the eigenvector x conform the partitioning of matrix A as x ¼ ðxT

e ; x
T
h Þ

T, we obtain
A1xh ¼ kxe and A2xe ¼ kxh.
For nonzero eigenvalues we can eliminate xh from the above two equations. We obtain
A1A2xe ¼ k2xe;
from which we conclude that
qðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðA1A2Þ

p
.

Furthermore, since q(A1A2) 6 iA1i2iA2i2 we have
qðAÞ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kA1k2kA2k2

q
; ð10Þ
and for the spectral norms of A1 and A2 we have the bounds
kA1k2 6
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

er;minlr;min
p

2

d̂y;min

and kA2k2 6
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

er;minlr;min
p

2

dy;min

;

where we have used the relevant inequalities of Eqs. (6) and (7). From the above two bounds and Eq. (10) it
follows that
qðAÞ 6 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er;minlr;min
p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dy;mind̂y;min

q ¼: u1.
This leads to the stability condition
Dt0 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er;minlr;min

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0y;mind̂

0
y;min

q
;

where we have introduced the primes again to indicate that we are dealing with normalized stepsizes. The
stability condition for the unnormalized stepsizes follows by multiplying the above inequality by c�1

0 ‘. We
obtain
Dt <
1

cmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dy;mind̂y;min

q
; ð11Þ
where
cmax ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e0er;minl0lr;min
p

is the maximum electromagnetic wave speed. Notice that for a uniform grid with stepsize d the above stability
condition simplifies to the well-known result
Dt <
d

cmax

.
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4. Two-dimensional problems

For two-dimensional problems (no variation in the z-direction) we consider E-polarized fields only, since
the analysis for H-polarized fields is very similar.

Using Kronecker product notation, the spatial differentiation matrix can be written in the form (see [8])
D ¼
0 Y� Inx 0bY � Inx 0 �Iny � bX
0 �Iny � X 0

0B@
1CA;
and the medium matrix M is given by
M ¼
Ml;x 0 0

0 Me 0

0 0 Ml;y

0B@
1CA.
Again, matrix M is diagonal and positive definite. Also note that Ml;x is different from Ml;y, since Ml;x con-
tains (averaged) permeability values at locations where the finite difference approximation for Hx is defined,
while Ml;y contains permeability values at locations where finite difference approximations for Hy are defined.
Furthermore, the system matrix is given by
A ¼
0 A1 0

A2 0 A3

0 A4 0

0B@
1CA;
with
A1 ¼M�1=2
l;x ðY� InxÞM�1=2

e ; A2 ¼M�1=2
e

bY � Inx

� �
M�1=2

l;x ;

A3 ¼ �M�1=2
e ðIny � bXÞM�1=2

l;y ; and A4 ¼ �M�1=2
l;y ðIny � XÞM�1=2

e :
Consider again the eigenvalue problem for matrix A and partition the eigenvector x conform the partitioning
of matrix A as x ¼ ðxT

hx; x
T
ez; x

T
hyÞ

T. For nonzero eigenvalues we can eliminate xhx and xhy from the eigensystem
to obtain
ðA2A1 þ A3A4Þxez ¼ k2xez
from which we observe that
qðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðA2A1 þ A3A4Þ

p
.

Moreover, since
qðA2A1 þ A3A4Þ 6 kA1k2kA2k2 þ kA3k2kA4k2
we get
qðAÞ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kA1k2kA2k2 þ kA3k2kA4k2

q
.

For the spectral norms of A1, A2, A3, and A4 we have the bounds
kA1k2 6
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

er;minlr;min
p

2

dy;min

; kA2k2 6
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

er;minlr;min
p

2

d̂y;min

;

kA3k2 6
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

er;minlr;min
p

2

d̂x;min

; and kA4k2 6
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

er;minlr;min
p

2

dx;min

;

where we have used Eqs. (3), (6) and (7). Putting everything together, we arrive at
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qðAÞ 6 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er;minlr;min
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx;mind̂x;min þ dy;mind̂y;min

dx;mind̂x;mindy;mind̂y;min

s
¼: u2
and this leads to the stability condition for unnormalized stepsizes
Dt <
1

cmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx;mind̂x;mindy;mind̂y;min

dx;mind̂x;min þ dy;mind̂y;min

s
. ð12Þ
For a uniform grid with stepsize dx in the x-direction and stepsize dy in the y-direction, the above bound
simplifies to
Dt <
1

cmax

1ffiffiffiffiffiffiffiffiffiffiffiffi
1
d2

x
þ 1

d2
y

q

and if, in addition, dx = dy = d, we get
Dt <
dffiffiffi

2
p

cmax

.

5. Three-dimensional problems

For three-dimensional problems, the differentiation matrix can be written in the form (see [2] for uniform
grids)
D ¼
0 Dh

De 0

� �
;

where Dh is a differentiation matrix operating on the magnetic field strength approximations and is given by
Dh ¼
0 bZ � Iny � Inxþ1 �Inz � bY � Inxþ1

�bZ � Inyþ1 � Inx 0 Inz � Inyþ1 � bX
Inzþ1 � bY � Inx �Inzþ1 � Iny � bX 0

0BB@
1CCA;
while De differentiates electric field strength approximations and is given by
De ¼
0 �Z� Inyþ1 � Inx Inzþ1 � Y� Inx

Z� Iny � Inxþ1 0 �Inzþ1 � Iny � X

�Inz � Y� Inxþ1 Inz � Inyþ1 � X 0

0B@
1CA.
Furthermore, the medium matrix is given by
M ¼
Me 0

0 Ml

� �

and this matrix is diagonal and positive definite. Finally, the system matrix for three-dimensional problems is
A ¼
0 A1

A2 0

� �
;

where
A1 ¼M�1=2
e DhM�1=2

l and A2 ¼M�1=2
l DeM

�1=2
e .
We observe that this matrix is similar in form as the system matrix for one-dimensional problems. Conse-
quently, the stability analysis is very similar to the analysis of one-dimensional problems. We do need bounds
for the spectral norms of the differentiation matrices Dh and De to carry out this analysis. These bounds are
provided by the following lemma.
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Lemma 1. For the spectral norms of the differentiation matrices Dh and De we have the following bounds:
kDhk2 6 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

d̂2
x;min

þ 1

d̂2
y;min

þ 1

d̂2
z;min

s
; ð13Þ
and
kDek2 6 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

d2
x;min

þ 1

d2
y;min

þ 1

d2
z;min

s
. ð14Þ
Proof. We only proof the first bound, since the second one can be obtained by following similar steps.

The spectral norm of matrix Dh is equal to its largest singular value. Denoting this singular value by r1, we
have
DhDT
h u1 ¼ r2

1u1; ð15Þ

where u1 is a left singular vector corresponding to r1. Introducing the divergence operator Ne as
Ne ¼ Inz � Iny � bX Inz � bY � Inx
bZ � Iny � Inx

� �

it is easily verified that
NeDh ¼ 0. ð16Þ

Applying the divergence operator to Eq. (15) and using Eq. (16), we obtain
Neu1 ¼ 0. ð17Þ

This shows that the left singular vector is divergence-free. Subsequently, we write the product DhDT

h out in full.
We obtain
DhDT
h ¼ L�Gh

Ne

Ne

Ne

0B@
1CA; ð18Þ
where Gh is the gradient operator given by
Gh ¼
Inz � Iny � bXT 0 0

0 Inz � bYT � Inx 0

0 0 bZT � Iny � Inx

0B@
1CA;
and matrix L is given by
L ¼
Lhx 0 0

0 Lhy 0

0 0 Lhz

0B@
1CA;
with
Lhx ¼ bZ bZT
� �

� Iny � Inxþ1 þ Inz � bY bYT
� �

� Inxþ1 þ Inz � Iny � bXT bX� �
;

Lhy ¼ bZ bZT
� �

� Inyþ1 � Inx þ Inz � bYT bY� �
� Inx þ Inz � Inyþ1 � bX bXT

� �
;

and
Lhz ¼ bZT bZ� �
� Iny � Inx þ Inzþ1 � bY bYT

� �
� Inx þ Inzþ1 � Iny � bX bXT

� �
.

Notice that Lhx, Lhy, and Lhz are real and symmetric matrices, and
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qðLhxÞ ¼ qðLhyÞ ¼ qðLhzÞ. ð19Þ

Substituting Eq. (18) in Eq. (15) and using Eq. (17), we obtain
Lu1 ¼ r2
1u1
from which we conclude that
kDhk2 ¼ r1 ¼
ffiffiffiffiffiffiffiffiffiffi
qðLÞ

p
.

Given the expression for matrix L and because of Eq. (19) we have
qðLÞ ¼ qðLhxÞ ¼ qðLhyÞ ¼ qðLhzÞ.

Taking the spectral radius of matrix Lhx (taking one of the other spectral radii leads to the same result) and
using the fact that Lhx is symmetric, we obtain
qðLÞ ¼ qðLhxÞ ¼ kLhxk2.
Finally, with the help of Eqs. (3), (6) and (7) we arrive at the bound
kLhxk2 6 4
1

d̂2
x;min

þ 1

d̂2
y;min

þ 1

d̂2
z;min

 !

and the result follows. u

As stated above, we can now obtain a stability bound for 3D problems by following essentially the same
steps as for 1D problems. For the spectral radius of matrix A we have
qðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðA1A2Þ

p
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kA1k2kA2k2

q
;

and for the spectral norms of A1 and A2 we obtain
kA1k2 6
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

er;minlr;min
p kDhk2 and kA2k2 6

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er;minlr;min
p kDek2.
Combining these bounds with the bounds of the lemma results in
qðAÞ 6 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er;minlr;min
p

1

d2
x;min

þ 1

d2
y;min

þ 1

d2
z;min

 !1=4
1

d̂2
x;min

þ 1

d̂2
y;min

þ 1

d̂2
z;min

 !1=4

¼: u3;
and this leads to the stability condition
Dt <
1

cmax

1

1
d2

x;min

þ 1
d2

y;min

þ 1
d2

z;min

� �1=4

1
d̂2

x;min

þ 1
d̂2

y;min

þ 1
d̂2

z;min

� �1=4
. ð20Þ
For a uniform grid with stepsize dx in the x-direction, dy in the y-direction, and dz in the z-direction, we get
Dt <
1

cmax

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d2

x
þ 1

d2
y
þ 1

d2
z

q ;
and if, in addition, dx = dy = dz = d, this becomes
Dt <
dffiffiffi

3
p

cmax

:

6. Numerical examples

To show the effectiveness of the upper bounds proposed in this paper, we have carried out two numerical
experiments for two-dimensional E-polarized electromagnetic fields. In both experiments homogeneous blocks
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are present in a vacuum domain. These blocks have dielectric contrast only, that is, the permittivity differs
from e0 and the permeability of the blocks equals that of vacuum.

In the examples the spatial discretization was chosen to accurately describe the propagation of electromag-
netic waves as generated by an external electric-current source with the derivative of a Gaussian pulse as a
source wavelet. The peak frequency of this wavelet was taken as fpeak = 900 MHz. To this frequency there cor-
responds a wavelength k = c/fpeak and the spatial stepsizes were chosen such that we have at least 33 points per
k everywhere in the computational domain. In both examples, the dual nodes interlace with the primary nodes
and a dual node is always placed halfway two primary nodes.

To measure the effectiveness of our stability condition we introduce a reduction factor a as
Fig. 2.
in the
a ¼ qðAÞ=u2.
Clearly, 0 < a 6 1 and if u2 is close to q(A) then a is close to one. The reason for calling a a reduction factor is
that if we take Dt = 2/u2 as the time step in FDTD, then
Dt ¼ a
2

qðAÞ .
This shows that the larger a is, the closer we are to the CFL upper limit 2/q(A).
In our first example we consider a square block of 2k0-by-2k0 (k0 is the wavelength in vacuum that corre-

sponds to the peak frequency) located in a vacuum domain. The block has a relative permittivity er = 4 and is
centered in the middle of the total computational domain of 6k0-by-6k0. Since the wavelength shrinks by a
factor of two inside the block, we have halved the stepsizes in and around the block. Fig. 2 shows a detail
of the complete configuration. The total number of unknowns for this problem is 208,033.

The spectral radius of matrix A was computed using ARPACK [5] and was found to be q(A) = 1.086783 ·
103. Our upper bound produces u2 = 1.120058 · 103 leading to a reduction factor of a � 0.97. In other words,
the upper bound is fairly close to the true upper bound in this case.

Our second example is taken from [9]. Two small square blocks both with a relative permittivity er = 64 are
located in a vacuum domain. Part of the configuration is shown in Fig. 3. The blocks are located at the centers
of the ‘‘plus-signs’’. These signs appear due to grid refinement and as a consequence the blocks are not visible
in Fig. 3. We therefore show a more detailed part of the configuration in Fig. 4. The total configuration is
6k0-by-6k0 and the side length of the blocks is k0/100. Furthermore, the stepsizes are halved as we approach
the blocks along each Cartesian direction. After the cell size has been reduced by a factor of two, we keep the
stepsize fixed for two cells and then repeat the process until 10 stepsizes make up the side length of the small
block in each Cartesian direction (see also Fig. 4). The total number of unknowns for this problem is 152,995
and again we computed the spectral radius of matrix A using ARPACK. The spectral radius was found to be
q(A) = 1.617291 · 104 and our upper bound produces u2 = 1.796575 · 104 resulting in a reduction factor
Detail of the computational domain showing grid refinement and nonuniform Yee cells. The upper left corner of the block is seen
lower right corner of the figure. The relative permittivity of the block is er = 4 and it is located in vacuum.
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Fig. 3. Detail of the computational domain showing grid refinement for the second example. Two small blocks both with a relative
permittivity er = 64 located in vacuum. The blocks are located at the centers of the ‘‘plus signs’’ and are not visible due to grid refinement.
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Fig. 4. Detail of the computational domain showing grid refinement, nonuniform Yee cells, and one of the blocks with a relative
permittivity er = 64.
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a � 0.90. This result is not as good as the result of the previous example, but the upper bound is still fairly
close to the CFL limit in this case.

This immediately brings us to the question whether the estimates presented in this paper are sharp or not.
Although we do not have a proof, we expect that the bounds are fairly sharp for problems encountered in
practice. To explain why, first observe that we obtained our estimates by separately bounding the spectral
norms of the medium and differentiation matrices. Given the definition of the system matrix (Eq. (9)), we
expect that our bounds will be sharp if the minimum stepsizes are present in regions where the medium param-
eters attain their minimum values as well. In practice, this condition is met due to the way the grid is refined.
As pointed out in [10], stepsizes should be reduced gradually to avoid large local truncation errors. A conse-
quence of this refinement procedure is that the minimum stepsizes (or stepsizes close to the minimum ones) are
present in regions where the medium parameters are small as well, and the upper bounds are therefore
expected to be fairly sharp for practical problems.

7. Conclusions

In this paper we have presented explicit and easily computed stability conditions for FDTD on nonuniform
tensor product grids. For one-dimensional problems the stability condition is
Dt <
1

cmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dy;mind̂y;min

q
;
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for two-dimensional problems we have
Dt <
1

cmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx;mind̂x;mindy;mind̂y;min

dx;mind̂x;min þ dy;mind̂y;min

s
;

and for three-dimensional problems the stability condition reads
Dt <
1

cmax

1

1
d2

x;min

þ 1
d2

y;min

þ 1
d2

z;min

� �1=4
1

d̂2
x;min

þ 1
d̂2

y;min

þ 1
d̂2

z;min

� �1=4
.

All quantities appearing in the upper bounds for the time step are known as soon as the configuration has been
specified and discretized. Moreover, for homogeneous media and uniform grids the above conditions simplify
to the well-known stability conditions that hold for these particular cases.
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